Structural studies of hGBP1 helical domain (α 7- α 13)

Annamalai Vijayalakshmi¹, Adrian Syguda¹, Christine Schlicker², Eckhard Hofmann², Christian Herrmann¹

¹ Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.

²LS Biophysik, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.

The INF- γ inducible guanylate binding proteins (GBP) belongs to the family of large GTP binding proteins including Mx and dynamin. GBP1 plays an important role in the host defense against intracellular pathogens⁽¹⁾. The common property of hGBP's is the ability to undergo oligomerization as a function of GTP binding and hydrolysis. Structurally the human GBP1 full length is composed of a LG (Large G) domain and an elongated α -helical domain⁽²⁾. Binding of GTP induces the formation of dimers interacting at the LG-domains, whereas in the presence of GDP.AIF*, this protein is able to form tetramers⁽³⁾. The interaction of the LG-Domains within this complex is well characterized by various biochemical experiments and the X-ray structure shows it as a dimer⁽⁴⁾.

The aim of this study is to elucidate the complex formation using the helical part of this protein as the second interaction domain. Therefore, we have determined the three-dimensional structure of hGBP1 helical domain (α 7- α 13) by solving the X-ray structure at 2.5Å resolution. We found out that the isolated helical domain (α 7- α 13) is able to form dimers in the crystal structure, as well. Furthermore, as the full length structure shows back folding of helix α 13 our new data of the α 7- α 13 helical domain indicates structural changing by an elongation of helices α 12 and α 13.

References:

1) Bae-Hoon Kim, Avinash R. Shenoy, Pradeep kumar, Rituparna Das, Sangeeta Tiwari, John D.MacMicking , Science, 332, 717-721 (2011).

2) Prakash, B., Praefcke, G. J., Renault, L., Wittingofer, A.& Herrmann, C, Nature, 403, 567-571 (2000).

3) T. Vöpel, A. Syguda, N. Britzen-Laurent, S. Kunzelmann, M. B. Lüdemann, C. Dovengerds, M. Stürzl,C. Herrmann, J Mol Biol. 2; 400(1):63-70 (2010).

4) A. Ghosh, G. J. K. Praefcke, L. Renault, A. Wittinghofer, C. Herrmann, Nature , 440, 101-104 (2006).