A V-type *c* subunit in an archaeal ATP synthase: Probing the Na⁺ binding site in the rotor

Florian Mayer¹, Julian Langer², Vanessa Leone³, José Faraldo-Gómez³ and Volker Müller¹

¹Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences Goethe University, 60438 Frankfurt, Germany, ²Max-Planck Institute of Biophysics, Department of Molecular Membrane Biology, 60438 Frankfurt, Germany and ³Max-Planck Institute of Biophysics, Theoretical Molecular Biophysics, 60438 Frankfurt, Germany

 A_1A_0 ATP synthases are the energy producers in the third domain of life, the archaea. These enzymes are unique and share properties with both, the bacterial F_1F_0 ATP synthases and the eukaryal V_1V_0 ATPases. Most of the archaea have an F-type like proteolipid (c subunit) in their rotor rings, consisting of one hairpin with one ion binding site. In contrast to that some other archaea, e. g. Pyrococcus furiosus, have an unususal proteolipid (1). The c subunit from this hyperthermophilic archaeon was isolated by chloroform/methanol extraction, purified and the molecular mass was determined with MALDI-TOF-MS. The proteolipid of P. furiosus is a 16 kDa protein, arosen by gene duplication, with two hairpins and two putative ion binding sites. Labeling of the ion binding sites with the ATP synthase inhibitor N,N -Dicyclohexylcarbodiimide (DCCD) clearly showed, that only one ion binding site is functional and that the labeling process is pH-dependent. The effect of Na⁺ on the labeling is object of the current research. Based on these results and the recent finding, that the A_1A_0 ATP synthase of *P. furiosus* has a rotor with 10 c subunits (2), a homology model of the c ring is present, giving first insights into the structure of an archaeal rotor ring with its ion binding site.

(1) Müller V (2004) An Exceptional Variability in the Motor of Archaeal A_1A_0 ATPases: From Multimeric to Monomeric Rotors Comprising 6-13 Ion Binding Sites. J Bioenerg Biomembr 36: 115-125

(2) Vonck J, Pisa KY, Morgner N, Brutschy B and Müller V (2009) Three-dimensional structure of A_1A_0 ATP synthase from the hyperthermophilic archaeon *Pyrococcus furiosus* by electron microscopy. J Biol Chem 284: 10110-10119